


Subject : Not All LED Lights are the same – The factors you don't see may determine the success of your projects

It is common place today for individual LED chips to deliver up to 120 lumens per watt. With the continuous development of new materials and designs, it is not unrealistic to expect the efficacy of solid state sources to achieve 200 lumens per watt in the coming years. This advancement in LED Chip technology, however, is only as good as the technology that is designed into the complete LED luminaire. To help you better understand this difference in LED lights, we conducted a complete tear-down analysis between our Par 38 30 watt LED Bulb with a major global LED light provider. The highest Par 38 wattage we could find was 19.5 watts. The table below highlights the significant design differences. These fundamental and critical design differences are what determine the lifespan and durability of the LED luminaire.

	Ours, 30W (The highest wattage and lumen output in the market)	Competitor's 19.5W (The highest wattage offered)	
Comparison Factor	Result (LED Rite)	Result (Competitor)	LEDRite vs Competitor
Initial Efficacy	63 lumen/Watt	62 lumen/Watt	No significant difference
Initial Lumen output (3000K)	1880 lumen	1200 lumen	57% higher
Heat Sink and	208,000 mm ²	12,500 mm ²	17 times the surface area
Dissipation Area	(Proprietary pure	(Baked-enamel over	(This is one of the key
	aluminum thin fin design)	cast aluminum design)	factors that enable us to
			design 30+ watt products)
Thermal Conduction -PCB board material	Aluminum –PCB	Fiber - FR-4 PCB	FR4 is lower cost to buy and assemble, but Aluminum offers better heat conductivity to maintain LED junction temperature to run cooler
Thermal Conduction -Gap between PCB and heat sink	Substrate Thermal paste Heat Sink Thermal paste	Thermal tape	Thermal Tape is faster to apply but does not have as good thermal conductivity
IP Rating	IP68 capable for outdoor	No IP rating for indoor	Better Seal = less debris in
	and harsh environment	applications only	the light over time results
	applications		in better lumen
			maintenance
Rated Life	50,000 hours	25,000 hours	2 times
Warranty	3 years, no limited	6 years on 3 hours	Up to 4 times longer

hours operation	daily operation	covered usage
(commercial and	(residential	
residential applications)	applications only)	

To further evaluate the thermal performance of each design, temperature measurements were taken on the LED solder joints (junction point), heat sink and power supply over a two hour period. The data shown below highlights the large difference in the thermal management ability of each design. The closer all three measurements are to each other the more robust the design. The large temperature gap between the junction temperature and the heat sink temperature will results in heat built up inside the light, which is a proven cause of early failures. In the competitors product, the power supply temperature reaches 105° Celsius after just 2 hours of operation. That could be one reason their warranty is based upon only 3 hours of operation per day.

It is reasonable to state that the LED itself will last for a very long time, BUT it is actually the quality of the driver and thermal management design which will finally determine the life, and that is why not all LED lights are the same.